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The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and

created for
of software
development
in 1977 and

the purpose of investigating the effectiveness
engineering technologies when applied to the
of applications software. The SEL was created
has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development Opera-

tion)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that include this document.

The contributors to this document include

Jeffrey Seigle (Computer Sciences Corporation)

Linda Esker (Computer Sciences Corporation)

Ying-Liang Shi (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to
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ABSTRACT

The use of the Ada® language and design methodologies

that utilize its features has a strong impact on all phases
of the software development project lifecycle. At the Na-
tional Aeronautics and Space Administration/Goddard Space
Flight Center (NASA/GSFC), the Software Engineering Labora-
tory (SEL) conducted an experiment in parallel development
of two flight dynamics systems in FORTRAN and Ada. The teams
fohnd some qualitative differences between the system test
phases of the two projects. Although planning for system
testing and conducting of tests were not generally affected
by the use of Ada, the solving of problems found in system
testing was generally facilitated by Ada constructs and de-
sign methodology. Most problems found in system testing
were not due to difficulty with the language or methodology
but to lack of experience with the application.

Ipda® is a registered trademark of the U. S. Government Ada
Joint Program Office (AJPO).
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ECTION 1 - TRODUCTION

Ada®1 is not just a new programming language but a part

of a major advance in software engineering technology that
includes new approaches for all phases of the software de-
velopment lifecycle. This paper, one of a series of reports
examining each project phase [Brophy 1987, Brophy 1988],
evaluates the impact of the use of Ada when compared with
FORTRAN in the system test phases of two projects.

The Software Engineering Laboratory (SEL) of the National
Aeronautics and Space Administration/Goddard Space Flight
Center (NASA/GSFC) conducted an experiment involving the
parallel development of a software system in both the Ada
and FORTRAN programming languages.2 NASA/GSFC and Com-
puter Sciences Corporation (CSC) were cosponsors of the
experiment, which was supported by personnel from the three
SEL participating organizations: NASA/GSFC, CSC, and the
University of Maryland. The chief goals of the study were
to characterize the development lifecycle of a large project
when Ada is used as the implementation language with a de-
sign methodology that can take advantage of its features and
to determine the impact of the use of Ada on reusability,
reliability, maintainability, productivity, and portability.

Two teams each developed a Gamma Ray Observatory (GRO) sat-
ellite dynamics simulator from the same specifications. One
team used FORTRAN as the target language with a conventional

Ipda® is a registered trademark of the U. S. Government
Ada Joint Program OQOffice (AJPO).

2The acronyms were Gamma Ray Observatory (GRO) DYnamics

Simulator in Ada (GRODY) for the Ada project and GRO Dynam-
ics Simulator in FORTRAN (GROSS) for the FORTRAN project.
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design methodology, which is the usual approach for this
type of application. The other team used Ada, with an
object-oriented design methodology developed at NASA/GSFC
[Seidewitz, Stark 1986]. NASA uses the GRO dynamics simula-
tor to test and to evaluate GRO flight software under condi-
tions that simulate the expected in-flight environment as
closely as possible [Agresti 1986]. By the end of the
system testing phases, the teams had produced 39,767 lines
of FORTRAN and 128,046 lines of Ada, where lines of code are
the total number of physical lines including exe- cutable
code and nonexecutable code, comments, and blank lines.
Although these figures give a rough idea of the com-
parative sizes of the two efforts, they do not give a pre-
cise basis for comparison of the effort required for
development in the two languages [Firesmith 1988].

Data were collected directly from team members and from a
database maintained by SEL. Members of both teams who par-
ticipated in system testing were interviewed and asked about
their expectations, actual findings, problems, solutions,

and opinions. Team members also completed forms throughout
the projects describing their effort levels and changes to
code, and that information was entered into the SEL database.
Presented data are taken from the database, and other sources
are referred to since much of the data has already been
reported.
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ECTION = FINITION QF THE SY T PHASE

Ada unit testers performed some integration before system
testing officially began. System testing and unit testing
effort overlapped considerably. The team members reported
their hours on Personnel Resource Forms (PRFs) and attributed
hours to specific activities. Figures 2-1 and 2-2 show the
weekly efforts for unit testing and system testing on the

two projects.

In the FORTRAN project, a clear delineation exists between
effort attributed to system testing and effort attributed to
unit testing although they overlap slightly. 1In the Ada
project, participants were performing system test work at
the same time as unit test work, and the overlap is consid-
erable. This overlap plus team members' comments suggest
that the line between unit testing and system testing was
blurred on the Ada project.

When the data from PRFs giving time attributed specifically
to system testing is considered and this effort is calcu-
lated as a percentage of total project effort, the Ada proj-
ect used 11.3 percent of its effort on system testing, and
the FORTRAN project used 8.91 percent. 1In addition to de-
fining activities by the hours attributed directly to them,
each project phase had a formal start and end date. Regard-
less of attributed activity, the sum of all effort occurring
during the system test phases was found and the effort during
system test determined as a percentage of all effort on the
entire project. Of the total effort on the two projects,

the portion used during the system test phase was 22.8 per-
cent on the Ada project and 17.9 percent on the FORTRAN
project. The standard allotment for system testing is

20 percent in the flight dynamics area. The Ada project
system testing phase was not grossly out of proportion, but

a general conclusion cannot be drawn about the language since

2-1
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other variables, such as greater training time for the Ada
project and overlap of activities other than system testing
in the system testing phases, exist.
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ECTION = WRITING THE SYSTEM TEST N

The author of the system test plan for the Ada experiment
[Stark 1987] said that the plan was based on the FORTRAN
plan being developed in parallel [Garrick]. He found no
need for special consideration because of the use of Ada or
the object-oriented design methodology; this is consistent
with the idea that system test plans in this environment are
generally written to test aéainst functional specifications,
which ideally do not depend on the implementation language.
However, because the Ada team did not have the same schedule
constraints as the FORTRAN team, they defined more tests--31
compared to 14 for the FORTRAN team.

5202



TI = NDUCTING T YST T

4.1 IMPACT OF ADA FEATURES

Conducting system tests was not generally different for the
Ada project than for the FORTRAN project. The system test
teams usually did not need to examine internals to run tests
and to evaluate results. However, the Ada team did find a
few Ada features that needed special attention.

One case in which an Ada featﬁre was an issue was in induc-
ing conditions that would cause Ada exceptions to be raised.
Many times this inducement was relatively easy, such as de-
letion of a required file; other times it was not, i.e., for
exceptions that flagged conditions that may not be intro-
duced externally such as division by zero. Although some
exceptions were difficult to test overall, the team felt
that they aided in comprehensive error handling.

The Ada test team reported that it was difficult to coordi-
nate concurrent tasks for testing although this coordination
can be challenging regardless of the language. The Ada lan-
guage offers tasking but FORTRAN does not, so the Ada team
took advantage of the ease of tasking more than the FORTRAN
team [Brophy 1988]. Although concurrency was easier to
design and implement in Ada, the team reported that set-
ting up tests and diagnosing problems were more difficult.
They agreed, however, that these problems were not peculiar
to Ada but would be found in any system using concurrency
and that since tasking was easier to implement, Ada provided
a net advantage when using concurrency.

The FORTRAN project used a form of tasking that was supported
by the operating system; the method did not provide true con-
currency but a series of tasks whose execution was controlled
by logic within the application software. Only one task was
active at any given time. The FORTRAN team did not report

4-1
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any unusual problems in testing a system with this architec-
ture and attributed only one or two errors to difficulties
stemming from their tasking approach.

Occasionally, the Ada rename feature caused confusion during
debugging sessions. This was attributed to the debugger's
failure to incorporate the rename feature rather than to a
difficulty in the language. When the debugger did not rec-
ognize the name used to rename a variable, programmers would
query the debugger for the value of a variable, and if it
were a name used to rename another variable, they could not
get the value. This problem was discussed with a member of
the Digital Equipment Corporation (DEC) Ada team; she said
she was unaware of the problem and would treat it as a bug.
She believed the problem should be fixed and that it might
even be resolved in the next release of the debugger.

Although the Ada exception handling, tasking, and rename
features required special attention and caused some prob-
lems, none was a major roadblock, and the team felt the
power added by these features outweighed the difficulties.

4.2 TIQOLS

Ada development is still relatively new, so despite many
excellent offerings of Ada tools, their availability is
neither as great as nor as widely known as the tools for the
more mature FORTRAN environment. The Ada team developed
software on a DEC VAX/VMS system,1 and DEC offers tools

that are compatible with Ada for use on the VAX [Schultz
1988].' The DEC symbolic debugger and Code Management System
(CMS) were the tools used in system testing. When asked
what other tools would have been useful, one team member

IpEC, VAX, and VMS are registered trademarks of Digital
Equipment Corporation.
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suggested that the DEC Performance and Coverage Analyzer
(PCA) would also have been helpful; other team members re-
sponded that they did not suggest that other tools were nec-
essary because they had no information about other available
tools. Although no clear need was identified for additional
tools, more information regarding the availability of other
Ada-oriented testing tools would have been helpful.

The FORTRAN team also developed their system on a VAX and
used only a debugger. They felt that tool was sufficient
for their testing.

5202
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TION —_ ERROR I A D_DURIN YSTEM TESTIN

5.1 R F_DAT

All team members recorded information for each software
change on a Change Report Form (CRF). The CRF describes the
type of change. Data were examined for changes with a type
of error correction. When the type of change is an error
correction, the form also describes the class of error, the
source of the error, the time to isolate the error, and the
time to implement the change. This data was entered into
the SEL database.

5.2 ASSE VERED DURIN YSTEM TESTI

Brophy noted that Ada developers in the experiment found
unit testing to be more difficult for Ada [Brophy 1988].
Since the team found isolation of Ada units to be difficult,
unit testing usually involved combinations of units rather
than single units. The team members reported that the types
of errors discovered through this method of unit testing
were often mismatched data interfaces and con- flicting
assumptions between internal components, which are errors
more typical of those discovered in later testing phases of
conventional FORTRAN projects. Although this in- tegration
increased unit testing effort, the team believed that it
made system testing easier. The team members also found
that the semantic checking performed by the Ada com- piler
uncovered mismatched calling sequences at compile time that
would not have been found in FORTRAN until run time.

The errors described on the CRFs were divided into the fol-
lowing classes: computational, data value (usage of vari-
ables), data initialization, external interface, internal
interface, and logic. Figure 5-1 shows the distribution of
errors for each project by class of error.

5202
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Of the total errors found during system testing, internal
interface errors accounted for 21 percent in the Ada project
and 29 percent in the FORTRAN project. However, this appar-
ent difference is not statistically significant.

Because the Ada system was not intended to become opera-
tional, managers placed a lower priority on it when assign-
ing effort to it, and it was difficult to get support that
the team thought they needed from analysts who had strong

- backgrounds in the specific application. The team attributed

most errors to misinterpretation of the specifications, such
as errors in mathematical computation, rather than design
errors or coding errors.

The design for the FORTRAN project was largely based on
stable designs of similar systems already developed, and
approximately 36 percent of the code was reused from other
systems. No precedent existed for an Adé system of the type
being developed; therefore, the design was new, and only 2
percent of the code was reused from previous systems
[McGarry, Agresti 1988]. This difference in reuse is another
variable that may have affected the error profile of the
FORTRAN project.

5.3 LVIN RS _FOQUN RIN YSTEM TESTIN

5.3.1 ISOLATING ERRORS

The Ada system test team reported that in some ways the Ada
code was easier to debug than similar FORTRAN systems be-
cause the design methodology controls access to related data
as opposed to the FORTRAN implementation that exploited large
COMMON blocks with little control over data access. For the
same reason the scope of effect of software errors was more
limited in the Ada implementation. The team reported that
they generally found errors easily in the Ada implementation
because of the program structures that are enforced by the

language. However, the times to isolate causes of errors

5-3
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indicate that the Ada team actually spent more time solving
errors than the FORTRAN team. The CRFs described time to
isolate an error defined as the time it took for the respon-
sible developer to isolate an error and does not include the
time to determine who is the responsible developer. As shown
in Figure 5-2, both teams solved most of their errors in less
than 1 hour; however, the FORTRAN team solved 82 percent of
errors in less than 1 hour, and the Ada team solved only 58
percent in less than 1 hour. When the first two categories
are combined, they show that the proportion of errors solved
in less than 1 day were similar for both projects: 94 per-
cent for the FORTRAN project and 96 percent for the Ada proj-
ect.

The Ada compiler does semantic checking that spots some er-
rors that would not be found until testing in a FORTRAN sys-
tem, so the proportion of easier to solve errors may have
been reduced in the Ada system test phase.

The development team found the readability of Ada as com-
pared to FORTRAN, in part due to more rigid coding standards,
to be a clear advantage in debugging, except where long var-
iable names appeared in complex mathematical expressions.

In some instances, this problem was easily solved by the
judicious selection of variable names and by renaming varia-
bles with long names when they were used in such expressions.

5.3.2 REPAIRING ERRORS

As shown in Figure 5-3, once the problems were isolated the
FORTRAN team needed slightly less time to make the changes.
Although the Ada compiler is more comprehensive and detects °
some errors earlier, it often requires recompilation of un-
changed units that are dependent on changed units. Compila-
tion errors can occur even in unchanged units being
recompiled. This recompilation was sometimes a significant

effort, particularly because of the configuration of the Ada

5-4
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system. The Ada implementation decision of nesting versus
library units had a ripple effect in debugging at the system
test level; a great deal of recompilation was necessary be-
fore some coding changes could be tested. This complaint
also surfaced in the implementation phase [Brophy 1988].

5.3.3 NONLANGUAGE DIFFERENCES

The FORTRAN team members had greater experience in both the
language in which they were working and in the particular -
application [McGarry, Agresti 1988]. The Ada team consist-
ently reported that the single biggest obstacle to effective
system testing was the lack of availability of people who
were intimately familiar with the technical aspects of the
application. Although the Ada team members were experienced
software developers, having on the average more years of
software development experience than the FORTRAN team mem-
bers [McGarry, Agresti 1988], their lack of experience with
the specific application made it more difficult for them to
detect and solve errors than for the FORTRAN team. These
differences in personnel background may account for the
ability of the FORTRAN team to isolate and correct errors
with equal or less effort than the Ada team, despite the
lanquage advantages described by the Ada team.
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ECTION - LE N ARNED

All personnel involved in both projects believed that soft-
ware development in Ada with an appropriate design methodol-
ogy is a different experience than the conventional FORTRAN
development of similar systems. '

Team members have subjectively attributed the many differ-
ences between the results of the two projects to various
differences in languages and'design methodologies, but too
many variables exist to be able to clearly assign all effects
in the system test phases to their causes. Some general
statements can be made about what was learned.

r i i n i h w n
h r inc n ge. The system test plan
for Ada was essentially the same as the plan for FORTRAN.
When running the tests, testers were not concerned with the
language.

dr rtoj £ ls is important. The extra effort
needed to resolve confusion and software problems due to the
error in the debugger shows the impact of even minor prob-
lems with tool software. An organization can most effec-
tively use its human resources if it has a good tool set and
actively promotes the use of the tools.

may r m rrors. Team members consist-
ently reported that the Ada compiler detected many of their
interface errors even before testing began. Objective data
neither confirms nor contradicts this assertion, but it is a
reasonable one since the Ada compiler checks for correct
interfaces, and the FORTRAN compiler does not.

Ada may be easier to debug. Team members reported that

Ada's better readability and the organization of the team's
design allowed them to find errors more easily than the

5202
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FORTRAN team. Objective data neither confirms nor contra-
dicts this assertion, partly because of uncontrolled experi-
mental variables.

mp i i A ni n _hav i n
Recompilation issues should be considered short of compro-
mising the integrity of the design. It is important to con-
trol the design to avoid unnecessary dependencies that will
require extensive recompilation in testing phases.

Definition of test phases for Ada systems is not well de-
fined. Testing Ada software at the system level is not as
clearly defined as was presumed at the outset of the project.

Although the system test plan itself was nearly the same as

for the FORTRAN project, and it was clear which tests were
to be designated system tests, it is very difficult to draw
a hard line between unit testing and system testing. Test-
ing Ada software must be approached differently than testing
systems where functions can be easily isolated for testing.

The differences that could clearly be attributed to the use
of Ada were generally positive ones, and Ada features with
negative aspects were either redeemed by their advantages or
easily mitigated. As the Ada environment matures and as
developers get more experience, we expect improvements to
occur in the building and testing of systems built with Ada
and object-oriented design when compared to methods that are
still considered conventional.
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